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Abstract 

 
Single walled carbon nanotubes represent the future of structural aerospace vehicle 

systems due to their unparalleled strength characteristics and demonstrated multifunctionality.  

This multifunctionality rises from the CNT’s unique capabilities for both metallic and 

semiconducting electron transport, electron spin polarizability, and band gap modulation under 

strain.  By incorporating the use of electric field alignment and various lithography techniques, a 

single wall carbon nanotube (SWNT) test bed for measurement of conductivity/strain 

relationships has been developed.  Nanotubes are deposited at specified locations through 

dielectrophoresis.  The circuit is designed such that the central, current carrying section of the 

nanotube is exposed to enable atomic force microscopy and manipulation in situ while the 

transport properties of the junction are monitored.   Studies of in-plane strains in the SWNTs 

produced through the use of the Nanomanipulator® haptic feedback atomic force microscope 

(AFM) system are discussed.  By applying this methodology to sensor development a flexible 

single wall carbon nanotube (SWNT) based strain sensitive device has been developed.  

Nanotubes are deposited at specified locations on a polyimide substrate through 

dielectrophoresis.  Studies of tensile testing of the flexible SWNT device vs conductivity are also 

presented.  Future embodiments of such a device lead to CNT based multifunctional structural 

systems. The purpose of the research described in the current thesis is to investigate the 

possibility of using single walled HiPCO (high-pressure carbon monoxide) carbon nanotubes as 

strain sensing agents to be used in a multi-functional materials system.  By demonstrating this 

feasibility further steps can be taken toward the advancement of future integrated structural 

health monitoring systems. 
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Chapter 1: Introduction 

 

1.1 Background 

In the early 1990’s a material with extraordinary strength and transport properties was 

discovered that is now shaping the future of aerospace materials systems.  Carbon nanotubes 

(CNTs), first observed by Sumio Iijima in Japan in 1991, come in two basic varieties, single-

walled and multiwalled.  Single walled CNTs consist of a single atomic layer graphene sheet 

rolled seamlessly into a tube structure, while multiwalled CNTs are several graphene sheets 

rolled into concentric tubes.  Single walled carbon nanotubes (SWCNTs) are most often found to 

be less than 2 nm in diameter with length / width ratios as high as 104 – 105 [1], and hence are 

considered one-dimensional.  Their electronic properties may be either metallic or 

semiconducting depending on their chirality (the angle at which the tube is rolled with respect to 

the lattice axis) given by a chiral vector (n, m) which also defines the diameter of the tube. When 

n-m=3k, where k is a nonzero integer, the tubes are conductive or are semiconductors with zero 

bandgap.   The different species of SWCNTs include armchair nanotubes which are metallic with 

m = n, and zigzag tubes having m=0.  Any other configuration is referred to as chiral.  This is 

illustrated in figure 1.1 along with several examples of different CNTs. 
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 M. S. Dresselhaus, et al., Carbon, Vol. 33, No. 7, 1995.  

 

 
R.H. Baoughman et al. – “The Route toward Applications,” Science, Vol. 297, 2002, pp. 787 – 792. 

Figure 1.1 - Top is a representative graphine sheet showing a wide range of different (m,n) 

values including the zigzag, m=o and armchair, m=n.  A, B, and C, are representative models of 

single walled carbon nanotubes having different chairalities.  D is a scanning-tunneling 

micrograph of a chiral single-wall carbon nanotube.  E is a transmission electron micrograph of 

a multi-walled nanotube.  
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Carbon nanotubes have received a great deal of attention since their discovery because of 

their unusual dimensions, electron transport properties and strength.  All theoretical and 

experimental results indicate that nanotubes are incredibly strong.  Typical measurements 

indicate a Young’s modulus of 1.0-1.3 GPa for multiwall tubes and 1.36-1.76 TPa nm/d for 

single walled tubes, where d is the diameter of the nanotube in nm [2].  They are also very 

resilient and are able to accommodate large deformations without irreversible atomic 

rearrangements of the crystalline structure.   

There are several ways of growing various types of nanotubes including laser ablation, 

arc-discharge, chemical vapor deposition, and gas phase catalytic growth methods.  The 

nanotubes used in the current research were produced by Carbon Nanotechnologies, Inc. [3] 

using the high pressure CO disproportionation (HiPCO) process [4,5].  This process injects 

Fe(CO)5 into a stream of CO gas at high temperatures and pressure.  The Fe forms metal clusters 

which act as catalyst sites promoting the Boudard reaction: 

CO + CO → C(s) +CO2(g) 

It is believed that when the metal particles achieve a size near that of C60 they nucleate and grow 

SWCNTs.  This occurs because a SWCNT is a more stable form of carbon than a spherical 

carbon coating of a metal cluster when diameters approach 1nm.  Nanotubes will continue to 

grow until the metal cluster, which is also growing with the addition of residual free Fe atoms, 

reaches a size that favors the formation of a carbon shell around the cluster, ending the CNT 

growth and producing tubes with average diameters of 1.1nm[4].  
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Figure 1.2 - TEM micrograph of as-produced SWCNT.  The dark spots are the Fe catalyst 

particles or impurities left over from the HiPCO growth process.  These CNTs can be purified to 

greatly reduce impurities as shown in the image on the right [6]. 

 

The HiPco method, while being able to produce large quantities of CNT material, yields a 

product whose quality has been under question.   The nanotubes contain large quantities of 

impurities, consisting mostly of the Fe catalyst, and require an acid treatment purification 

process to obtain usable nanotubes.  The catalyst is easily seen as the small dark spots in the 

transmission electron micrograph Fig 1.2 above [6]. 

Some growth methods offer the possibility of growing CNTs directly on devices in 

predefined locations; these methods are very expensive, laborious, and inefficient.  They have, 

however, produced CNT based devices capable of making strain sensitivity measurements of a 

single SWNCT [7, 8, 9].   
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1.2 Review of Previous Research 

Several theoretical and experimental studies on the effects of deformation on nanotube 

conductance have been reported in recent years [7, 8, 9].  Brief experimental schematics of these 

studies are included in figure 1.3.  In each of these studies, nanotubes were grown in place using 

chemical vapor deposition (CVD) techniques where catalyst materials were deposited on 

electrical leads.  The CNTs then grown from one catalyst site to another.  The left two columns 

of figure 1.3 used CVD grown nanotubes to span a trench that has been etched into the substrate.  

This then allows for direct manipulation of the suspended nanotube in the vertical direction.  

Since the nanotube is fixed at either end to conductive leads, electrical measurements can be 

made while deforming the tube.     

 

E.D. Minot, et. al, Physical Review Letters, Vol. 90, No. 15, 
2003, pp. 156401-1 - 156401-4. 

J. Cao, et. al, Physical Review Letters, Vol. 90, No. 15, 
2003, pp. 157601-1 - 157601-4. 

T. W. Tombler, et. al, Nature, Vol. 405, 2000, 
pp. 769-772. 

Figure 1.3 – A review of other studies similar to work preformed in current thesis.  All methods 
using CVD grown nanotubes.  The left two columns show nanotubes suspended over a trench 
and are deformed vertically by direct manipulation of the CNT.  In the third column, a nanotube 
was suspended from flexible cantilever on one end and fixed at the other.  
 

The third column in figure 1.3 shows a similar experiment to the first two. However, instead of 

directly probing the CNT, the nanotube is fixed at one end to a conductive cantilever and the 
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other end again to a conductive lead.  To avoid localized deformations in the CNT caused by 

direct probing, the cantilever is flexed to elongate the CNT while measuring the conduction vs 

strain properties.  Each of these studies has contributed to the understanding electromechanical 

strain characteristics in SWCNTs.  However, the methods discussed here rely on the production 

of CNTs by CVD growth methods.  The CVD growth of nanotubes tends to be inconsistent and 

leads to impurities and imperfections in the tube structures.  The CVD methods are also costly 

and produce relatively smaller quantities of CNTs which makes scale-up of production difficult.  

The advantages to CVD, however, include the possibilities of growing single CNTs precisely 

where they are needed.  

 One alternative to CVD tubes is HiPCO tubes which were discussed earlier.  These tubes 

are mass produced in very high quantities, which offers great potential for materials development 

applications.  Other positive qualities include commercial availability, removal of catalyst 

materials by purification processes, fewer imperfections, and higher consistency from batch to 

batch.  The only trouble is that, they can not be grown in place on a device. 

 

 

1.3 Purpose 

The purpose of this research is to investigate the possibility of using single walled HiPCO carbon 

nanotubes as strain sensing agents to be used in multi-functional materials systems that are both 

load bearing and self sensing.     

Two SWCNT based devices have been constructed and tested for strain sensitivity.  The 

first embodiment of this system includes a direct straining technique of a CNT bundle using an 

atomic force microscope (AFM) aided by a virtual reality / haptic force feedback user interface.  
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Strain sensitivity measurements are accomplished by means of displacing segments of aligned 

CNT bundles in contact at either end with conductive electrodes.  Resistance measurements are 

made in situ while straining takes place.   

The second embodiment takes place on a similar CNT based circuit, this time constructed 

on a flexible polyimide substrate.  Straining of the system is done by mounting the flexible 

substrate containing the CNT device onto an aluminum sheet which is then loaded into a tensile 

test load frame.  Here loading can be modulated while in situ resistance measurements are made. 

In constructing these samples, bulk nanotubes are suspended in solution and deposited 

into specific locations using a dielectrophoresis methodology which is later discussed in detail.  

The potential advantage to this methodology over existing techniques is that nanotubes can be 

separated into very small ropes or bundles and deposited onto a surface in bulk, making many 

sensing devices simultaneously in parallel.  This allows rapid production and lower cost of such 

a system.  In both configurations described above, the deformation of the single-walled carbon 

nanotubes should cause an increase in the electrical resistance of the nanotubes.  By 

demonstrating this feasibility, further steps can be taken toward the advancement of future 

integrated structural health monitoring systems.   

 

1.4 Scope 

 

A theoretical explanation of CNT strain mechanics, dielectrophoresis calculations and 

predictions for the deposition and alignment of SWCNTs is presented in chapter 2.  Here 

dielectrophoresis calculations including methods for calculating the dielectrophoretic force on 

both metallic and semiconducting CNTs, as used to align and deposit CNTs, are described in 
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detail.  Applying the theory requires the development of test samples.  The CNT device design 

and fabrication methods are presented in chapter 3 including photo and electron beam 

lithography as well as experimental data showing detailed imagery of controlled CNT 

depositions.  Testing of the samples by means of the direct displacement of the CNTs first began 

by simple proof of concept experiments in which CNTs were displaced using the 

Nanomanipulator® and atomic force microscopes which are discussed in chapter 4.  This initial 

work included the investigation of self-assembled monolayers (SAM) as a means of facilitating 

CNT manipulation with the Nanomanipulator®.  Investigation of SAMs led to the development 

of a method which consistently produces aligned CNTs between two electrodes in user defined 

locations.  This work is also described in chapter 4.   

Deformations are made in single CNT bundles using the Nanomanipulator® in which the 

CNTs have been deposited onto a thin film circuit constructed on an oxidized silicon wafer.  

These tests provide evidence for CNT strain sensitivity based upon strong correlation between 

changes in localized deformation and changes in resistance and are presented in chapter 5.  The 

second embodiment of a strain sensitive device is presented in chapter 6.  Here a flexible CNT 

based circuit was developed using an architecture similar to the samples used in the direct 

deformation experiments in chapter 5.  In this case, samples were mounted to an aluminum test 

coupon which was subjected to axial loading.  Resistance measurements were made and 

compared to the loading data.  Results indicate high resistance sensitivity to loading.  A 

discussion of the results of the data collected in this thesis is then presented in chapter 7 followed 

by recommendations for future research.  
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Chapter 2: Theory 

 

2.1 Dielectrophoresis 
 
To build the CNT test specimens, a method is needed to control the deposition and alignment of 

the CNTs to position them into desired locations.  One method which has been demonstrated to 

be highly effective uses a dielectrophoresis (DEP) electric field alignment method. 

Recent literature and NASA research have shown both single walled and multiwalled 

nanotubes align to the field lines of an externally applied alternating electric field through a 

process known as dielectrophoresis [10-15].   Dielectrophoresis is the translational motion of 

neutral matter caused by polarization effects in a nonuniform electric field [16]. This 

phenomenon rises from the static polarizability of nanotubes.  The polarizability of SWCNTs 

under constant fields parallel to the cylindrical axis is highly dependent on the tube’s electronic 

structure.  In contrast, the polarizability for fields perpendicular to the axis only depends on the 

tube radius.  The relative magnitudes of these two quantities suggest that under the application of 

a randomly oriented electric field, nanotubes acquire dipole moments pointing mainly along their 

axes, with the size of the dipole inversely proportional to the square of the minimum direct band 

gap[11].  By taking advantage of the induced dipole, electric fields can be used to align the 

CNTs.  One point of interest is the fact that these findings indicate a dipole dependence on the 

electronic structure of the CNT.  This means the some varieties of CNTs should align better than 

others and suggests that under the proper conditions, an applied electric field could be used to 

sort out different species of tubes from one another. 
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Interestingly, AC fields will only move uncharged particles.  Particulate contaminants in 

the CNT suspensions, such as dirt or dust, are often charged particles.  If using a DC alignment 

method, the contaminants will be aligned and deposited along with the CNTs.  The high 

frequency (in the MHz range) AC field eliminates this problem and only aligns the neutrally 

charged nanotubes.  

Considering a simple case of a dielectrophoretic force acting on a dielectric sphere as 

shown by Pohl [16] we get the relationship 

RMS

mp

mp
mdep EF 2

2
∇

+

−
∝

εε
εε

ε      (1) 

where εp is the dielectric constant of the particle, εm is the dielectric constant of the medium and 

ERMS is the average field strength.    In this case εp can be broken into two sub categories, 

semiconducting and metallic.  Metallic CNTs are expected to have very high dielectric constants, 

and have been suggested to have an effectively infinite polarizability [11].    Depending on the 

sign of 

mp

mp
m εε

εε
ε

2+
−

       (2) 

from equation (1) above, the force acting on the CNT is either positive, attracting the CNT to the 

higher field density, or negative, repelling it.  For this particular work the CNTs were dispersed 

in toluene having a dielectric constant of 2.  From Krupke, et al. [14] we find that εp < 5 for 

semiconducting CNTs.  Equation (1) then implies that for semiconducting CNTs where  

2 < εp< 5 the CNTs will have a positive dielectrophoretic force and will be attracted to the 

higher field gradients, thus aligning the CNTs.  If εp < 2, they will be repelled from the field 

gradients.  For metallic CNTs εp >> εm so that Fdep is always positive. 
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For semiconducting CNTs, static polarizability calculations were made by Benedict et al. 

[11] for 16 different CNT species.  These calculations are included below and have been 

supplemented with additional force calculations which use the static polarizability in the axial 

direction, αzz,, the CNT’s length l, and the particular DEP alignment case described in this thesis.  

Pohl [16] relates force to polarizability as follows: the dielectrophoretic force acting on a dipole 

in a nonuniform electric field is equal to the length of the dipole multiplied by its polarizability, 

local field, and the field gradient.  Then    

 eezzDEP EElF ))(( ∇⋅= οεα      (3) 

thus 

2)(
2 ezzDEP ElF ∇= οεα      (4) 

 

 For simplicity, the average length of the nanotubes is assumed to be 300nm.  This length 

is consistent with atomic force microscopy measurements made on deposited nanotubes after 

approximately 24 hours in a bath sonicator and is used for all subsequent calculations.  Due to 

the complex geometry of the applied field, the gradient was determined using a finite element 

model shown below in figure 2.1.  Here a 10V potential was placed on the electrode and a 0V 

potential boundary on the axis of symmetry between the tips.  This geometry is illustrated in 

figure 2.1 and 2.2 but is discussed in further detail later in chapter 3.  The finite element software 

solves Maxwell’s equations over a self refining mesh.  From these results, the electric field and 

the gradient of the electric field can be plotted and are shown in figure 2.1.     

The force is calculated along six different lines on the surface between the two tips, each 

time at different distances from the electrode tip as shown later in figure 2.2.  Five lines are 
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perpendicular to the tip and one is parallel with it and is positioned directly between the two 

electrodes. 

The force calculations for the metallic CNTs require a different approach.  In the 

semiconductor case, force calculations are made using the polarizabilities of the nanotubes given 

by Benedict et al. [11]. 

 

Figure 2.1 - Finite element prediction of the applied field gradients in region near the alignment 
electrodes. 
 

For metallic tubes with chiral vectors where n-m is a multiple of three, having zero band gap, 

they claim the nanotubes have an effectively infinite polarizability so that equation (4) no longer 

applies.  The polarizability, however, is not truly infinite. Thus a different approach is required to 

determine the force exerted on the CNTs under DEP.   

 It is known from classical physics that a conductive material in the presence of an electric 

field will redistribute electrons on its surface such that there is no electric field inside the 

material.  In other words, the material polarizes itself in response to the applied field to keep its 

internal field zero.  This also applies to conductive nanotubes, but only to a point.  Since carbon 
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nanotubes are so small, the actual number of atoms and the related number of mobile electrons 

becomes very significant.  If the applied electric field becomes high enough, it could be possible 

that there are not enough valence electrons in the nanotube to cancel the applied field in the 

interior of the tube. In this case the polarizability is, in fact, not infinite. 

 To calculate the number of electrons needed to keep the internal field zero for this 

experimental case, an applied field of 10Volts / 3microns is used.  This is the field strength used 

experimentally in the current research.  Then from [17] the following equation 

 

  24 r
qEext
οπε

=        (5) 

 

where Eext is the external applied field and εο is 8.85 x 10-12 C2/(N*m2), the total charge q in 

coulombs needed to oppose the applied field can be calculated.  Dividing q by the charge per 

electron, e = 1.602 x 10-19 coulombs, results in the number of electrons needed to oppose the 

applied field.  For this experimental case with an applied field of 10Volts / 3mircons and an 

assumed nanotube length of 300nm (r=150nm) there are approximately 52 electrons needed to 

zero the internal field. 

 Equation (5) is used to determine how many electrons are needed, but, as mentioned 

before, this does not necessarily mean there are that many available.  To determine the number of 

electrons available an additional calculation is needed based upon condensed matter physics. 

 Using this approach requires some background into solid state and condensed matter 

physics.  There are three particular concepts which will be used to determine the number of 

electrons available in the nanotubes to oppose the electric field:  the Fermi energy, the Fermi 

function, and the density of states. 
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At absolute zero, electrons arrange themselves into the lowest possible energy state. 

Since electrons are fermions having half-integral spin, they must obey the Pauli exclusion 

principle, which states that electrons are not able to occupy identical energy states.  The Fermi 

energy level then is the energy level below which all of the electrons sit idly in the lowest 

available energy states and infinitesimally above which empty higher energy states are available 

for activated electrons. 

The Fermi function f(E) gives the probability that a given available electron energy state 

will be occupied at a given temperature. The Fermi function comes from Fermi-Dirac statistics 

[18] and has the form 

 

1
1)( /)( +

= − kTE fe
Ef ε       (6) 

 

Where εf is the Fermi level, k is Boltzmans constant = 8.617 x 10-5 eV K-1, and T is temperature in 

Kelvin. The Fermi function gives the probability of occupying an available energy state, but this 

must be multiplied by the number of available energy states at the Fermi energy to determine 

how many electrons would reach the conduction band.  This density of energy states is called the 

electron density of states or just density of states.  Saito, et al, [1] state that for all metallic 

nanotubes, independent of their diameter and chirality, the density of states at the Fermi energy 

per unit length along the nanotube axis is a constant given by 

   

  
t

EN F πα3
8)( =       (7) 
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where α = 2.49 Å is the graphine lattice constant, and |t| = 2.9eV is the nearest-neighbor carbon-

carbon tight binding overlap energy.  Multiplying the Fermi function by the density of states at 

the Fermi energy and integrating from the Fermi energy to infinity results in the number 

electrons above the Fermi level per unit length of the CNT: 

 

  ∫
∞

− +
=

f

f
dE

e
NENumber kTE

ε
ε 1

)( /)(     (8) 

 

Here N is the density of states from equation (6), εf can be set to zero, k is Boltzman’s constant, k 

= 8.617 x 10-5 eV K-1, and T is temperature in °K.  The average length of a nanotube is assumed 

to be 300nm and a temperature of 295°K is used for the calculations.  This results in 10 electrons 

available in the conduction band of the nanotube. 

  A final correction must be considered as change in potential energy, ∆u, which is the 

average energy gained by an electron moving from one end of the tube to another due to the 

applied electric field:  

 

         (9) qElu =∆

 

The electrons near the Fermi energy level can exchange electrostatic potential energy for 

chemical energy and move above the Fermi surface where they are free to move along the tube.  

The net effect is a downward shift in the Fermi surface by the electrostatic potential energy gain 

of the electrons in moving down the tube.  While the assumed average tube length is 300nm, the 

average electron moves half the length of the CNT.  Thus for equation (9), l=150nm.  The 
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applied field is 10Volts / 3mircons and the charge of an electron is 1eV, ∆u is then equal to 

approximately ½ eV.  In terms of equation (8), this yields: 

 

∫∫
∞

−
−

∞
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− +

=
+

=
2/1

/)(/)( 11
)( dE

e
NdE

e
NENumber kTE

u
kTE ff εε  (10) 

 

Equation (10) produces a total of 305 electrons above the Fermi surface.  In this case there are 

enough electrons available to oppose the applied electric field.  However at some higher field 

strength, when the number of electrons available is less than the number needed to oppose the 

electric field, this may no longer be true if ∆u=qEl is not too large. 

Using these calculations, dielectrophoretic force approximations for metallic SWCNTs 

can be made using a classic dipole moment calculation in which two charges q are separated by a 

fixed distance s in the presence of a nonuniform field Eext.  The dipole moment p is then defined 

as qs where s is the length of the nanotubes, s=300nm, and q is the charge from the 52 electrons 

calculated in equation (5): 

         (11) extDEP EpF ∇=

 Using equation (4) for the semiconducting CNTs and equation (11) for the metallic CNTs 

(and small band gap semiconductors), dielectrophoretic forces were calculated for a set of 

different nanotube chairalities along the 6 different lines illustrated in figure 2.2.  These are 

plotted below in figures 2.3 and 2.4 and The maximum DEP forces at each location are displayed 

in table 2.1.   
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Figure 2.2 - Schematic of experimental geometry and locations of dielectrophoresis force 
calculations. 

 

Table 2.1 is a composition of (n,m) values with corresponding CNT radii, and their 

calculated polarizability from reference [11].  Note that small band gap semiconductors (chiral 

vector (3q,0) for int q) were treated as metallic CNTs for polarizability calculations.  This data is 

supplemented with the DEP forces per unit length (N/Å) calculated for the specific geometry of 

this experiment.   
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Tube (n 1 ,n 2 ) R α zz F max (.1µm)/ Å F max (.25µm)/ Å F max (.5µm)/ Å F max (.75µm)/ Å F max (1µm)/Å
(9,0)* 3.57 4.34E-14 9.19E-15 1.92E-15 8.34E-16 4.25E-16
(10,0) 3.94 174.7 4.84E-19 5.15E-20 6.02E-21 1.95E-21 8.75E-22
(11,0) 4.33 171.6 4.76E-19 5.06E-20 5.91E-21 1.92E-21 8.59E-22
(12,0)* 4.73 4.34E-14 9.19E-15 1.92E-15 8.34E-16 4.25E-16
(13,0) 5.12 292.4 8.11E-19 8.62E-20 1.01E-19 3.27E-21 1.46E-21
(14,0) 5.52 268.3 7.43E-19 9.24E-21 9.24E-21 3.00E-21 1.34E-21
(15,0)* 5.91 4.34E-14 9.19E-15 1.92E-15 8.34E-16 4.25E-16
(16,0) 6.30 445.5 1.24E-18 1.31E-19 1.53E-20 4.97E-21 2.23E-21
(17,0) 6.70 401.4 1.11E-18 1.18E-19 1.38E-20 4.49E-21 2.01E-21
(18,0)* 7.09 4.34E-14 9.19E-15 1.92E-15 8.34E-16 4.25E-16
(19,0) 7.49 651.1 1.81E-18 1.19E-19 2.24E-20 7.28E-21 3.26E-21
(4,4) 2.73 4.34E-14 9.19E-15 1.92E-15 8.34E-16 4.25E-16
(5,5) 3.41 4.34E-14 9.19E-15 1.92E-15 8.34E-16 4.25E-16
(6,6) 4.10 4.34E-14 9.19E-15 1.92E-15 8.34E-16 4.25E-16
(4,2) 2.09 49.1 1.36E-19 1.45E-20 1.69E-21 5.49E-22 2.45E-22
(5,2) 2.46 4.34E-14 9.19E-15 1.92E-15 8.34E-16 4.25E-16  

 

Table 2.1 - Table of maximum dielectrophoretic forces along lines at set distances from the 
electrode tips.  The first three columns are taken from reference [11].  The  polarizabilities, (αzz), 
were used to calculate the dielectrophoretic force on the semiconducting SWCNTs when a 10V 
difference is applied between electrodes 3µm apart.  Metallic CNTs are shown in blue.  The * 
indicates small-gap semiconductors.  
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Figure 2.3 - This plot shows the maximum DEP force/length nanotubes between the two 
electrodes shown in figure 2.2 above. 
 

These findings indicate that there is substantially more DEP force on the metallic nanotubes than 

on the semiconducting tubes, about four orders of magnitude more.  Additionally the metallic 

peaks are broader, which allows for greater attractive forces at larger distances from the 

electrode tips.   

To understand how this force translates into nanotube alignment it is necessary to 

condsider how the nanotubes behave in solution.  Nanotubes undergo what is known as 

Brownian motion, which is simply the random movement of microscopic particles suspended in 

a fluid.  This motion has an energy of kbT equal to 2.3x10-2eV or 3.685 x 10-21 Joules.  In order 

for the applied field to have an alignment effect on the nanotubes, the alignment energy must be 

many times larger than kbT [19].  Applying this idea to the calculations above, the energy gained 

in moving a 300nm metallic tube 100nm starting from 1 micron away from the electrode tip is 
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approximately equal to 32 kbT.  This is more than sufficient to overcome the Brownian motion 

and align the nanotubes.  
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Figure 2.4 – These two plots represent the DEP forces per unit length of each of the different 
SWCNT types along the two closest lines to the electrode tips, .1µm and .25µm.  
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Force/length allong line at y=.75 microns
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Force/length allong line at y=1 micron
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Figure 2.4 continued - These plots represent the DEP forces per unit length of each of the 
different SWCNT types along the remaining three lines; .5µm,  .75µm and 1µm shown clockwise.  
 

In the case of the semiconducting tubes, the energy gained in the tubes is always less than 

kbT for all of the cases studied here, reaching approximately .1 kbT  for the (19,0) case at .1µm 

from the electrode.  Figure 2.3 shows the peak DEP forces between the two electrodes and 

indicates that the DEP forces grow exponentially with proximity to the electrode tip.  From this it 

is possible to infer that at some distance very close to the tip, the DEP forces will be great 

enough to overcome the Brownian motion and align with the field lines. 

The data presented here suggest that dielectrophoresis has a very good potential to sort 

nanotubes, pulling out both the metallic nanotubes and small band gap semiconducting CNTs 

from the solution and depositing onto the sample surface.  The DEP force can draw these 
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nanotubes in from over one micron away from the electrode tip and align them to the field lines 

between the electrodes.     

 

2.2 CNT Strain Mechanics 

 

In 1997, a report published by a group of French scientists [20] predicted that uniaxial stress 

applied parallel to the axis of the carbon nanotubes can significantly modify the nanotube’s band 

gap.  For zigzag tubes, with chiral vector (n,0), they showed that this behavior is strongly 

dependent on whether n=3q, 3q-1, or 3q+1 where q is an integer.  The theoretical simulation of 

the band gap vs. stress showed that the band gap changes linearly with stress for zigzag tubes 

whereas armchair (metallic) nanotubes, with chiral vector (n,n), remained metallic through all 

strains in the study.  In particular, semimetallic CNTs, which are a subset of zigzags tubes having 

a chiral vector (3q,0) for int q, are predicted to be the most sensitive.  

Recently several experimental reports have confirmed the theoretical model described 

above using individual, grown-in-place SWCNTs.  In terms of the physical properties of the 

nanotubes, there should not be any difference between straining a grown in place CNT or a 

deposited HiPCO CNT.  However, HiPCO CNTs are very difficult to exfoliate into single tubes 

and are found most often in bundles ranging in size from 4nm up to approximately 30nm in 

diameter.  Because of the CNT bundling, it is difficult to pinpoint the exact nature of any 

expected resistance change.  There are two distinct phenomena that could cause this behavior.  

First is the already known and understood straining of the individual CNTs themselves, where in 

fact the conduction band gaps are modulated by induced strain as cited above.  Second is the 

possibility for tube-tube interaction.  In the bundles, the CNTs are not anchored and have the 

 22



 

ability to slide across one another with relative ease.    This could cause a possible change in the 

conductance of the CNT bundle.   

A CNT sample was fabricated using the dielectrophoretic CNT deposition methods and 

device fabrication methods described later in this thesis.  The sample was then used for 

conductivity testing and was subjected to cryogenic temperatures in a SQUID magnetometer 

down to 5°K.  Every 20°K an I-V curve was taken to observe any effects of temperature on 

conductance.   

The SQUID Magnetometer is a specialzed piece of testing equipment designed for low 

temperature studies as and/or magnetic material properties and characterization.  The system 

consists of a liquid helium cooled sample section in which sample temperatures can be taken 

slightly below 5°K.  In addition, the magnetometer is equipped with a Superconducting magnet 

capable of applying up to a 7 Tesla magnetic field at the sample location.   

The data are shown below in figure 2.5.  Here one can observe the transition from the 

linear metallic behavior at room temperature to the semiconducting behavior at very low 

temperatures consistent with a small band gap nanotube. The data shown are very similar to 

those obtained in a similar test reported in reference [21], and shown at the bottom of figure 2.5.   

Since the theoretical work of reference [20] predicted no change in the band gap of the 

metallic CNTs, it was important to demonstrate that the CNT bundles in the present work show 

semiconducting behavior making these bundles strain sensitive. The data in figure 2.5 confirm 

just that.    
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Figure 2.5 - I-V measurements taken of CNT ropes  at different temperatures from 5°K to 235°K 
shown at top.  Below are similar data from reference [21].  Here both data sets illustrate the 
semi conductive behavior of SWCNT ropes at low temperature. 
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Θ = 7° 

Θ = 15° 

 Tombler et al. Nature, Vol 405, 2000

 

Figure 2.6 - Experiment (left) and theoretical model (right) by Tombler et al. [9].  In this work 
the AFM tip is used to deform a suspended SWCNT shown in thetop left and  bottom left 
drawings.  The AFM tip is displaced vertically while conductive measurements of the device are 
made.  The right two nanotube models illustrate how the AFM distorts the shape of the nanotube. 

 
Experimental data and molecular dynamics modeling of a strained – suspended SWCNT 

experiment shown in figure 2.6 are given by Tombler et al. [9].  A brief background on carbon – 

carbon bonds is first needed to fully understand their findings.   

In molecular dynamics modeling of carbon it is important to understand the nature of 

carbon based materials.  Carbon, being the sixth element on the periodic table, has six protons 

and six electrons.  The six electrons occupy the 1s2, 2s2, and 2p2 atomic orbitals which in its 

ground state can more specifically can be written as 1s2 2s2 2p2.  The outer orbitals, 2s2 and 2p2 

are known as the valence electrons, which in the crystalline phase can configure themselves into 

2s, 2px, 2py, and 2pz orbitals.  This arrangement is necessary for covalent bonding and is a key 
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element in the strength of the carbon nanotubes.  In carbon, the energy difference between the 2p 

and the 2s levels is small compared to |t|, the nearest-neighbor carbon-carbon overlap.  Therefore 

the electronic wave functions for the four valence electrons can easily mix with one another in a 

process called spn hybridization, changing occupation of the 2s and 2p atomic orbitals so as to 

enhance the binding energy of the carbon atom with its neighboring atoms.  In doing so, the 

mechanical wave functions derived from Schrödinger’s equation are combined to form an 

equivalent set of wave functions known as hybrid atomic orbitals.  In this case one s orbital 

combines with three p orbitals to form four equivalent bonds called sp3 hybridization.  Similarly, 

one s-orbital can combine with two p-orbitals to form 3 equivalent bonds called sp2 hybridization 

[1, 22].  Sp2 hybridization in graphite has a trigonal planer geometry where the hybridized 

orbitals form σ - bonds between neighboring carbon atoms.  σ - bonds are covalent bonds which 

are very strong having maximum electronic overlap and produce the hexagonal arrangement of 

the carbon atoms in a graphite sheet.  One of the 2p orbitals in each atom overlaps with those of 

its neighbors to form the π - bonding system where the electrons are delocalized and are free to 

move about.  π - bonds are much weaker than σ - bonds and are responsible for electrical 

conduction.  Diamond for instance, is composed of carbon where the bonds are sp3 hybridized.  

In this configuration, all of the bonds are σ - bonds, which explains why diamond is so hard and 

is also a poor electrical conductor. 

Under ambient conditions, nanotubes are composed of carbon in sp2 bonds.  In the work 

of Tombler et al. [9], shown in figure 2.6, it was found that strong local bonding deformation 

induced by the AFM tip can be responsible for dramatic conductance decrease in CNTs (shown 

in purple.)  For small bending angles, θ ≤ 7° (refer to figure 2.2) the nanotube retains its sp2 

bonding throughout its structure.  As the tip pressure increases, deformations in the CNT start to 
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distort the bond structure.  Bonding between atoms proximal to the tip begin to switch from sp2 

to an sp3 hybridization while the rest of the CNT remain in an sp2 state.  Further local analysis of 

the bent nanotube in the tip vicinity reveals the onset of an increase in σ-electrons (electrons in 

σ-bonds) in the highly deformed local region.  This is, however accompanied by a significant 

decrease in the π-electron (electrons in π-bonds) density.  The π-electrons, which are mainly 

responsible for electrical conduction, are delocalized causing a drastic reduction in the π-electron 

density, which is responsible for the substantial decrease in conductance. 

 Additional modeling and experimental work have been done to investigate the 

electromechanical response of nanotubes under uniaxial stress.  As mentioned at the beginning of 

the chapter, predictions by Heyd, Charlier, and McRae [20], show that discrete density of states 

energy levels and the gaps are very deformation sensitive. Thus uniaxial stress applied parallel to 

the axis of the carbon nanotubes significantly modifies the nanotube’s band gap.  The chirality of 

the tube plays a large role in its electromechanical behavior.  Metallic nanotubes remain highly 

symmetric under loading and have been predicted to be the least sensitive to strain where as 

small band gap semiconductors have been predicted to show the largest change in their 

conductivity under loading.  This was confirmed experimentally by Cao et al. [8].  The molecular 

dynamics of the uniaxial loading case are highly complex with few publications offering any 

analyses of the transport behavior under loading.  The theoretical work by Heyd, Charlier, and 

McRae [20] indicates that some nanotubes decrease their band gaps while others have an 

increasing band gaps with applied stress depending on their chirality.  Experimental works, 

however, present conductivity results similar to those of the Tombler paper [7, 8, 9]. 
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Chapter 3 Circuit Design, Lithography, and CNT Alignment 

 

3.1 Circuit and Lithography Design 

In order to proceed with the electromechanical testing of carbon nanotubes, a test bed is needed 

to bridge the small size scales of the nanotubes to something more tangible. The test bed 

developed in this research was designed around the use of a silicon substrate with a thin film 

circuit deposited on it.  A simple circuit has been designed to provide access to conductive 

measurements of the CNT while leaving a central, current carrying section of the nanotube 

exposed.   

UV lithography can routinely approach features down to about 15-20 micron sized 

features using commercially available photoplots shown in figure 3.1.  In order to have the 

precision needed for this experiment, a two step lithography process is used to fabricate each 

sample.  It consists of a photolithography step to build all of the larger features followed by an 

electron beam lithography step which is capable of writing features under 100 nanometers in 

size, allowing placement of electrodes with nanometer precision.  Three different views of the 

photolithography CAD design are shown in figure 3.1 with the critical dimensions indicated.  

The left drawing is the complete design for one device.  The right two drawings are close-up 

views of the left drawing used to identify critical design dimensions and to conceptualize the 

configuration.  The electron beam lithography takes place within the 100µm x 100µm area 

defined by the electrical lead spacing shown in the red box of the bottom right drawing in figure 

3.1.   
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 To make solid electrical connections to the device while allowing it to be used in a 

SQUID magnetometer for magnetic field and temperature dependant measurements, the design is 

centered on the use of a zero insertion force (ZIF) connector, which has 14 available connections 

spaced by a .5mm pitch shown in figure 3.2.  To use the ZIF connector, the photolithography 

mask was designed incorporating the .5mm pitch to each of the device’s leads.  

 

 

Figure 3.1 - Photolithography CAD files with close-up views of the main sensor region shown in 
the right two drawings.  Electron beam lithography takes place inside the 100µm x 100µm area 
defined by the electrical lead spacing shown in the red box of the bottom right drawing.  The 
break point is an arbitrary location at which the sample can be scribed and cleaved to allow for 
either point probe inspection and alignment techniques or electrical connectivity via the ZIF 
connector. 
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Figure 3.2 - ZIF Connector chosen for its size and functionality.  This particular connector with 
14 electrical connections and .5mm pitch will fit inside the SQUID magnetometer and allow for 
temperature and magnetic field vs. conductivity measurements such as those shown in figure 2.5. 

 

The L-shaped markings easily identified in the right two drawings in figure 3.1 are the 

alignment files used by the electron beam lithography to align the e-beam lithography to the 

photolithography.  The lower section of the device has a solid bar which attaches four of the 

leads.  These bottom four leads are used during the CNT alignment process.  By connecting them 

in parallel, a point probe device can also be used to do the alignment process and is able to align 

all four sensor sections simultaneously.  If the ZIF connector is to be used, the device must be cut 

at the break point pointed out in the left drawing.  This is where the device must be scribed and 

cleaved to remove the lower section such that the four leads are no longer connected in parallel. 

The completed photolithography mask is shown in figure 3.3.  The design is tiled in an 

array to cover a large area to make the devices highly parallel.  Device spacing was 

predetermined based on the cutting swath of the dicing saw which is to be used to separate each 

of the individual devices on a Si wafer. 
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Figure 3.3 - The final photomask design used for UV photolithography device fabrication.  The 
design is tiled in an array to cover a large area to make the devices in a highly parallel manner.  
Device spacing was predetermined based on the cutting swath of the dicing saw which is to be 
used to separate each of the individual devices on a Si wafer. 

 

The steps in the photolithography process are as follows:  Commercially available silicon 

wafers were used as a substrate with a 500nm oxide thickness.  These were cleaned by rinsing 

first with electronic grade acetone, electronic grade isopropanol, and finally deionized water 

while spinning in a spin coater at 3000rpm.  The wafers were then coated with Shippley 1805 

photo resist and prebaked for 30 minutes in an oven at 90 degrees C.  

The photomask is placed on the coated wafer on top of which a large piece of quartz 

covering the entire sample is placed.  The quartz is used as a weight to hold the mask securely to 

the surface of the photo resist and is transparent to the UV light.  The sample is then exposed to 

UV light produced by a mercury arc lamp for approximately 60 sec.  Once the necessary 

exposure is completed the wafer is developed in a solution of Shippley Microposite Developer / 

de-ionized H20 mixed 1:1 for approximately 20 sec.  The sample is rinsed in De-ionized H20 and 
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blown dry with nitrogen.  To remove all residues left behind by the protoresist, an oxygen 

plasma treatment is used for 30 sec.  Once completed the sample is ready for metal deposition. 

Metals are deposited via electron beam evaporation using the following process.  The 

samples are first coated with a thin adheasion layer consisting of 10nm of titanium or chromium, 

followed by 30nm of gold to act as the main conducting portion of the circuit.  The circuit is 

made of gold because it is a good conductor, and it does not oxidize.  Au does not adhere to 

silicon well, however, so an adhesion layer of titanium or chromium is needed.  The metal is 

deposited under vacuum of approximately 10-6 torr.  Upon completion of metallization a liftoff 

step is required which removes all of the excess metal and resist from the samples.  Liftoff is 

completed by soaking the sample in electronic grade acetone for several minutes followed by 

ultrasonication in a bath sonicator. 

The small relative size of the nanotube and electron-beam circuitry compared to the 

photolithography allow four individual CNT devices to be constructed on each sample.  This 

design allows all of the devices to undergo CNT alignment and deposition simultaneously in one 

step by sharing a common top alignment electrode, which allows alignment to take place in 

parallel without losing access to measurements at each nanotube junction individually.  

At this point, each wafer contains several samples which need to be separated for testing 

and further processing.  This is accomplished using a dicing saw in which the sample is first 

glued to a glass plate using a thermoplastic and then mounted into the saw, aligned and cut.  

Before the photoplot was laid out, the swath of the saw blade was measured, and this dimension 

was then used as the lateral spacing of each of the lithography patterns.  This ensures that each 

sample will correctly fit into the ZIF connectors and line up with the contacts.  The dicing 

process requires the sample to be glued to a flat surface using a thermoplastic as the adhesive.  
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When finished, the excess thermoplastic is needs to be removed and is easily dissolved in 

acetone, followed by rinsing with IPA, de-ionized water and blown dry with nitrogen. 

The sample is now ready for electron beam lithography.  The electron beam lithography 

writes the very smallest features shown in figure 3.4 and is capable of defining features down to 

about 80nm in size.  In this case the lines are 1.5µm wide by almost 50µm long and come to a 

point at the end. 

First the sample is spin coated at 500 rpm for 5 sec. to deposit the electron beam resist, 

Shippley 920 PMMA A2, 2% in Anisole (Poly methyl methacrylate), evenly over the entire 

surface. Then the sample is accelerated to 3500 rpm for 30 seconds to produce a thin layer over 

the sample surface.  The sample is placed on a hotplate for 90 seconds at 180°C as a pre-bake 

step, which evaporates the residual solvent in the PMMA, and then is loaded into the scanning 

electron microscope.   

The electron beam lithography patterns are defined by a user created CAD file.  The 

CAD files is read by the Nanometer Pattern Generation System (NPGS) which is a commercially 

available upgrade to the SEM.  The SEM is set to an acceleration potential of 30kV and a beam 

current of 20pA. Typically line doses are set to 1.3 nC/cm.   

In this case the electron beam lithography design shown in figure 3.4 creates two 

opposing electrodes at a 3µm spacing  which come to a point at the end.  Also defined are two 

alignment “L” shapes which can be used for subsequent electron beam lithography steps, and 

two squares placed at the interface between the electron beam lithography and the 

photolithography to maximize the electrical connection between the two. 
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Figure 3.4 - Electron beam lithography design.  The electrode tips come to a point to focus the 
electric field during alignment and are spaced at 3µm.  The squares in the drawing above are 
placed at the interface between the electron beam lithography and the photolithography to 
maximize the electrical connection between the two. 
 

 The samples are developed in 3:1 isopropanol (IPA) (electronic grade) and methyl 

isobutyl ketone (lMIBK) for 70 sec. followed by a rinse in IPA then deionized water and blown 

dry with nitrogen.  The samples are cleaned again using oxygen plasma and are coated with a 

10nm Cr adhesion layer followed by 20nm of Au.  Liftoff is accomplished by immersion in 

acetone along with a bath sonication.  Samples are then ready for CNT depositions. 
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50µm

100µm

1µm

12µm 

10 µm 

 34



 

 

3.2 Experimental CNT Alignment 

Nanotube deposition was carried out by first dispersing SWCNTs in toluene at a concentration of 

approximately 1µg/ml and sonicating for 24 hours in a bath sonicator.  A sine wave potential of 

10Vpp at 5Mhz was applied using a function generator connected to a single end input to 

differential output circuit, the schematic of which is shown in figure 3.5 (top).  This circuit takes 

the hot lead from the function generator and creates two signals identical to the function 

generator output but 180° out of phase with each other.  A 1MΩ resistor is in parallel with 

outputs which helps to prevent electrostatic discharge problems to which the nanotubes are very 

sensitive.   Each side of the differential output is connected to opposing electrodes fabricated on 

the sample surface.   

Originally a more simplified circuit was used which put the hot output from the function 

generator on one electrode which was driven at 10Vpp and grounded the opposing electrode with 

a 1MΩ resistor in parallel between the electrodes.  This produced an uneven distribution of 

CNTs between the alignment electrodes and resulted in many more nanotubes being collected on 

the oscillating side. 

Interestingly both AC and DC fields have been attempted for CNT deposition.  Through 

the range of frequencies tested, (0-20MHz ) there was very little observable difference when 

looking at the AFM data, however the higher frequencies tended to show only the slightest 

improvement in alignment characteristics.  As mentioned in chapter 2, the AC field will only 

move uncharged particles.  Particulate contaminants in the CNT suspensions, such as dirt or dust, 

are often charged particles.  If using a DC alignment method, the contaminants will be aligned 
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and deposited along with the CNTs.  The high frequency (in the MHz range) AC field eliminates 

this problem and only aligns the neutrally charged nanotubes.  

The separation distances of the electrodes ranged between 3µm and 3.5µm.  Several 

small droplets of nanotube solution are dispensed onto the sample surface by use of a pipette.  

After a predetermined time, from 15 seconds to 5 minutes depending on the targeted tube 

density, the nanotube solution is blown off the sample surface with nitrogen. 

 

Figure 3.5 - Single input - differential output circuit show above (top) is  used to align the 
nanotubes.  This method drives the alignment signal into the differential circuit which produces 
two identical outputs 180° out of phase.  Below the differential output circuit is another circuit 
used to align nanotubes.  This circuit oscillates the potential of one probe while keeping the 
other grounded.   
 

Different tip shapes and configurations of the electrodes have also been used to optimize 

certain characteristics of the aligned nanotubes.  In the current research, the tips of the electrodes 

come to a point, yielding a highly focused field such that CNTs are aligned in a small region 
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between the electrodes.  To limit the number of CNTs aligned between the electrodes, shorter 

alignment times are used. 

This pointed tip configuration shown in figure 3.4 was modeled with a finite element 

analysis program to predict the electric fields and electric field gradients.  As mentioned in 

chapter 2 the model places a 10V potential on the electrode and a 0V potential boundary on the 

axis of symmetry between the tips.  The finite element software solves Maxwell’s equations on a 

self refining mesh.  From these results, the electric field and the gradient of the electric field can 

be plotted and are shown in figure 3.6-A.  With the understanding that the CNTs will align to the 

electric field lines as detailed in chapter 2, this model predicts the orientation of deposited 

nanotubes on a device built and tested under similar conditions.  Results shown in figure 3.6-B 

show such a device built with CNTs deposited as described above for 1 minute.  The 

experimental data show that the CNTs have generally aligned to the predicted field lines.  Some 

entanglement of the CNTs does occur, and therefore not all of the tubes are in perfect alignment.   

Other electrode configurations have been tested using two parallel electrodes and a five 

minute alignment time.  This results in a large number of tubes aligned in parallel between the 

electrodes as shown in figure 3.7.  The two images in figure 3.7 were taken on the same sample 

but in different locations.   Both locations were exposed to the same tube solution and for the 

same time.  The left image in 3.7 did not have an applied electric field whereas the right image 

did.  Ideally, the experimental devices would be constructed with only one nanotube between the 

electrodes to minimize the possible variables in the experiment.  This would eliminate the tube-

to-tube interaction under loading.  
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A. B.

C. 

 

Figure 3.6 – A - Finite element analysis results showing  electric field lines coming from the 
electrode (in red) and going to a zero-potential boundary simulating the symmetry of opposing 
and opposite charged electrodes.  B – Atomic force micrograph of CNT alignment between two 
electrodes.  The CNTs are aligned to the predicted field lines from the FEM simulation. 
 

Unfortunately, a single tube device is very difficult to obtain.  As mentioned before, the van der 

Waals forces keep the nanotubes stuck to each other in small bundles. Also, while somewhat 

controllable, the CNT deposition technique often leaves several to hundreds of CNT ropes 

deposited and aligned. 

Considerable efforts have been made to exfoliate SWCNT ropes.  In this work several 

attempts have been made to create a stable solution of single SWCNTs using different solvents.  

Ideally the nanotubes would disperse completely into the solution and de-bundle.  This however 

is very difficult to do at the current time. 
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No Electric Field Electric Field

Figure 3.7 – Comparison between the effect of an applied electric field vs no electric field.  Left 
shows no indication of CNT alignment, the nanotubes appear to have a random orientation.  
Right shows how the applied electric field draws the CNTs between the electrodes and aligns 
them to the field lines.   

 

There have been several reports on this topic by various groups [23, 24, 25] all with a 

slightly different recipe. However, none has seemed to be able to completely exfoliate single 

SWCNTs into solution.  The method used in the current thesis to produce consistent CNT 

solutions of small bundles and occasional single tubes disperses the CNTs in toluene at 1µg/ml.  

This is followed by ultrasonication in a bath sonicator for 24 hours.  At this point the CNTs 

appear to be optically dispersed leaving the solution clear to the unaided eye with no visible 

suspended particulates.  These solutions have proven to be stable for several months at a time.  

Occasionally the CNTs will precipitate out of suspension, but only 5-10 minutes in the bath 

sonicator is need to return the solution to an optically dispersed state.  This solution was found 

after trying several combinations of other solvents including acetone, isopropanol, water, 
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dimethylformamide (DMF), dimethylacetamide (DMA) and different CNT / solvent ratios from 

very high density to extremely low.  Ongoing research at NASA Langley Research Center is 

aimed at trying to better disperse the CNTs into solution using various techniques including the 

use of surfactants such as Triton X-100 and Sodium dodecylbenzinesolfonate and other 

approaches such as functionalization of the CNTs with different chemical groups.   

Given that a single tube device is nearly impossible to fabricate at the current time using 

a CNT suspension, the next best case is to use a single bundle of SWCNTs.  Figure 3.8 shows a 

single CNT bundle that was deposited and aligned between the two alignment electrodes.  

Further device fabrication put down a second set of electrodes to make a four lead measurement 

on the bundle.  Unfortunately the electrical connections failed before any measurements could be 

taken; however, height measurements were made using the AFM and are also shown in figure 

3.8. 

Height measurements were taken using the DI Nanoscope IIIA in tapping mode.  CNT 

diameters are measured from images of CNTs or CNT bundles by measuring the height of the 

CNT, not the width.  This is because the probe used to measure the CNTs comes to a point that is 

approximately the same size as the CNTs themselves.  This introduces error in lateral 

measurements made on objects which are on the same size scale as the tip radius.  Since it is 

assumed that the CNTs and CNT bundles have circular cross-sections, the height data can be 

used for accurate measurements of CNT / CNT bundle diameters without introducing errors due 

to SPM tip width.  In the case of figure 3.8 the CNT rope had a diameter of approximately 27nm.   
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Figure 3.8 - AFM image of a single CNT rope spanning between two electrodes deposited at 
10Vpp at a frequency of 2MHz for 15sec.  Right image displays the topography measurement 
line with measurements shown in bottom right.  Data inset bottom left indicates a bundle height 
of approximately 27nm. 
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Chapter 4: Controlled Displacement of Carbon Nanotubes using 

Atomic Force Microscopy  

 
4.1 Atomic Force Microscopy and the Nanomanipulator® 

Scanning probe microscopes and atomic force microscopy have come to the forefront of research 

instrumentation and have proven their usefulness in materials characterization and analysis.  

They have led to significant advances in a wide variety of fields including materials science, 

semiconductor physics, biology, electrochemistry, polymer sciences, tribology, biochemistry, 

surface thermodynamics, organic chemistry, and nanotechnology, to name a few.  Their value as 

a research tool is due to their unparalleled ability to resolve a variety of interactions between a 

very small probe tip and the sample surface with atomic resolution.  Scanning probe microscopy 

methods have been designed to measure thermal gradients, magnetic forces, electric forces, van 

der Waals forces, etc.  One of the many benefits of using such a system is that it can be used in 

ambient conditions, unlike other microscopy methods which usually need to be carried out under 

high vacuum and risk damaging the sample. 

The scanning probe microscope (SPM) used here is the Thermomicroscopes (now Veeco)  

Explorer coupled with the Nanomanipulator® system shown in figure 4.1.  The Explorer uses a 

fixed sample stage and a flexible cantilever probe on the end of which is a very sharp pyramid 

shaped tip.  The probe is mounted to a set of piezo electric actuators capable of scanning the tip 

over 100 microns in both the x, and y directions and can move roughly 5 microns in the z 

direction.   
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Figure 4.1 - Explorer atomic force microscope shown left coupled with the Nanomanipulator® 
user interface shown right is used to make modifications to the surface and manipulate and 
strain individual nanotubes and bundles with nanometer position control. 
 

Topography measurements can be made either in contact mode or in tapping mode.  In 

contact mode the tip is moved toward the sample surface while tip deflections are monitored as 

described below.  At approximately 20nm from the surface, interactions between the sample 

surface and the tip cause the cantilever to deflect.  These deflections are measured using a laser 

which is reflected off the cantilever into a photodetector.  In tapping mode, the cantilever is 

oscillated near its resonance frequency and again brought close to the surface. Tip-surface 

interactions cause changes in the cantilever’s resonance frequency, amplitude and phase.  By 

monitoring these changes, either in tapping mode or contact mode, the system can raster over a 

user defined area of the sample and map out its topography as shown in figure 4.2. 
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Figure 4.2 - ThermoMicroscopes –Instrument operation manual schematic of contact mode 
operation (left) where the AFM tip contacts the surface directly.  Tapping mode schematic is 
shown right with the AFM tip is brought very close to the sample surface where the tip is driven 
at its resonanve frequency and interact with the vanderwalls surface forces.   
 

The Nanomanipulator® is a commercially available user interface upgrade to the 

Explorer AFM. This utilizes a haptic force feed back system and 3D graphics to allow the user to 

take control of the AFM tip and manipulate submicron sized objects with nanometer precision.  

This instrument has demonstrated its ability both to displace nanotubes on a sample surface as 

well as to flex nanotubes in place, repeatedly in a precisely controlled manner, measuring various 

tip-sample interactions and forces in the process. It is discussed in further detail below. 

In this work, the coupling of the Explorer AFM and the Nanomanipulator® has allowed 

for the imaging and straining of CNTs while conductivity measurements are performed.  Imaging 

the topography of the surface, and modifying the sample, (inducing strain in the CNTs) take 

place in two different modes of operation; tapping mode and contact mode.  The Explorer images 

in tapping mode and makes its modifications using contact mode.  Tapping mode is the preferred 

method for imaging nanotubes because it provides crisp topological images without disturbing 

the CNTs through direct contact.  As mentioned earlier, in contact mode the tip rasters very close 

to the surface and can impart translational forces on objects on the sample surface. When the tip 
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makes contact with the CNTs there is a tendency to bump the CNTs and displace them.  This 

makes contact mode the obvious choice for manipulating CNTs and a poor choice for imaging 

them, especially when such great care is taken to position them.  

 Some of the first CNT manipulations for this work, shown in figure 4.3 below, illustrate  

the feasibility of this methodology.  The left two images show before (top) and after (bottom) of 

a CNT loop which has been pulled by dropping the AFM probe into the center of the loop, and 

pulling downward [26].  This manipulation was done using the AFM system where the 

manipulation routine was programmed into the system by the user.  The images on the right of 

4.3 were done using the Nanomanipulator®.  Here the Nanomanipulator® was used to push 

several bundles of SWCNTs to spell “NASA” as shown in the bottom right image [26].  
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Figure 4.3 - Left images from DI multimode IIIa AFM showing before and after of large CNT 
rope by direct manipulation using the AFM probe.  Right, Nanomanipulator® images at 
different times during same session.  The bottom pictures shows tubes manipulated to spell 
“NASA.” 
 
 

 

 

 

 

1 µm 

1 µm
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4.2 Self Assembled Monolayers 

Recent reports have demonstrated the ability to manipulate CNTs on a substrate and move them 

over relatively sizable distances [27, 28]. Originally, the findings in these reports were to be 

employed to use the Nanomanipulator® to move near-by, randomly deposited CNTs into contact 

with a set of electrodes completing a circuit with a CNT.  This was quickly found to be 

impractical due the unreasonable time required to construct a single device, the inability to scale 

up fabrication, and the expense of operating the equipment.  These factors necessitated an 

additional CNT positioning and deposition method which became the dielectrophoresis method 

discussed in detail in chapter 2 and the patterned self assembled monolayer (SAM) method 

described below. 

In recent publications, it has been shown that self-assembly techniques offer a great 

potential for the positioning of CNTs [29, 30]. CNTs can be immobilized on a surface via 

electrostatic interactions between the nanotubes and surface-bound moieties.  The strength of this 

interaction greatly depends on the nature of the terminal groups on the substrate.  Silicon wafers 

are typically coated with a thin layer of either methyl- or amino-terminated groups using self-

assembly techniques.  CNTs have previously been shown to adhere strongly to amino-terminated 

surfaces and weakly to methyl-terminated surfaces.  Combining these two observations leads to a 

scheme for CNT placement and alignment on a substrate. 

Studies were conducted to determine the effects of CNT manipulation on functionalized 

SAM-coated Si substrates [31].  It has previously been shown that multi-walled CNTs, can be 

easily displaced or strained using the Nanomanipulator® without significant distortion of the 

nanotube topography [28].  According to M.R. Falvo et al., [27] the multi wall CNTs are much 
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stiffer and respond to the increased tip-to-sample force by rolling and then sliding.  The same 

instrumentation can also be applied to the positioning of SWCNTs.  Using the 

Nanomanipulator® interfaced with an Explorer SPM (ThermoMicroscopes), modifications were 

made to CNT ropes on different surfaces using a Nanodevices magnetic force cantilever 

operating both in tapping (imaging) mode and contact (manipulation) mode.  The magnetic force 

probes were chosen because they are typically longer cantilevers having a lower spring constant 

than the typical non-contact tips used for general imaging.  This allows greater control over the 

tip-surface force in the lower ranges used in moving CNTs.  The stiffer tips simply cut, flatten or 

fray the CNTs instead of pushing them. Lateral force manipulation measurements were taken in 

the direction of a left to right line scan only.   

During CNT manipulation testing, it was found SWCNTs are difficult to move while 

maintaining the integrity of the CNT ropes, which vary in length and diameter.  Difficulties lie in 

the resolvable size and inter-dynamics of the CNT ropes. In this case, CNT ropes (3-15nm 

diameter) composed of several SWCNTs (averaging 1.4nm in diameter) respond differently to 

the direct force applied by the SPM tip than the multi-wall CNTs reported in reference [27]. 

Application of force by the SPM tip to the ropes normal to their long axis, yields different 

deformations on each of the different SAMs.  After each modification of the surface/rope the 

sample was imaged.  On the CNT repulsive trimethylsilyl (TMS) surface, ropes were deposited 

by spraying dispersed tubes on the substrate.  Ropes on this surface ranged 5-15nm in diameter.  

Deformation of the rope typically followed a pattern consisting of an initially large lateral force 

which is maintained for a distance of approximately 300 – 500nm, followed by a decay period 

after which the lateral force returns to its zero state. On 3-aminopropyltriethoxysilane (APTES), 

tubes would quickly adhere to the surface when the substrate was immersed in a toluene solution 
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containing dispersed CNTs.  The CNT ropes on this surface were on average smaller in diameter 

ranging from single tubes up to 8nm in diameter.  Manipulations were conducted on larger CNT 

ropes to increase the signal- to-noise ratio.  Manipulations differed from the TMS sample by 

having a shorter duration of the initial force and little to no decay period on the average 

manipulation.  Figure 4.4 displays lateral force measurements for tube movement on APTES and 

TMS SAMs.  

In addition to the differences in the modification data, the post-modification images taken 

on each sample show significant differences in how the CNTs move.  On TMS, large portions of 

the tube were displaced, as opposed to the APTES samples where tube movement is localized to 

the area directly in contact with the probe tip.  The surface modifications corresponding to the 

lateral forces depicted in the bottom of figure 4.4 are shown in figure 4.5 and are typical results 

for SWCNT ropes deposited on an APTES surface.  Due to the labor intensive nature and the 

minimal advantage gained by the use of the SAMs for the controlled deposition of CNTs, this 

methodology for positioning CNTs is not practical for device development.  This exercise, 

however, has further verified the feasibility of manipulating SWCNTs using an AFM, and has 

provided valuable insight into testing procedures and parameters which can be used for further 

CNT manipulations using the AFM / Nanomanipulator®.  In particular, the lessons learned here 

regarding instrument settings and configurations have been directly applied to the work 

described in chapter 5.  
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Figure 4.4 - Lateral force data from CNT modification, APTES above and TMS below.  Note the 
lower force and long decay in TMS data [31]. 
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Figure 4.5 - CNT rope on APTES coated wafer.   Tip path is indicated in top picture.  The 
resulting modification can clearly be seen in the post-modification image above [31]. 
 

  

Additionally, by utilizing some of the knowledge gained from the SAM work above, an 

alternative CNT deposition methodology was discovered. By combining the principles of DEP 

described in chapter 2, the electron beam lithography methodologies in chapter 3, and the self-

assembled monolayer work reported above, a method has been developed which consistently 

produces aligned CNTs between two electrodes in user defined locations.  A detailed description 

of the development of this new methodology can be found in references [10, 32].    

A diagram of the device used for testing is shown in figure 4.6 which uses the previously 

defined photolithography methods for fabrication.  What makes this process unique, is the use of 
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an APTES SAM discussed earlier in a patterned location between the electrodes also shown in 

figure 4.6. 

 

 

Figure 4.6 - Diagram of simple CNT circuit with Cr / Au contact pads and electrodes fabricated 
by basic photo and e-beam lithography methods [10]. 
 

  

 

The results of this experiment are shown figure 4.7.  The CNTs align just as before with 

DEP.  However, there is the added bonus of being able to precisely define locations on the 

surface where the CNTs are desired.  The limiting factor in deposition precision is the electron 

beam width.  Using this methodology, it should be possible to achieve SAM patterns with 

features less that 60nm in size which can be used for precision CNT deposition. This discovery 

may be important in future work were stray CNT may short out other circuits on a device or 

cause other unforeseen problems.   
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AFM image (tapping mode)

Electrodes 

Patterned SAMCNT Alignment 

Figure 4.7 - Patterned SWCNT deposition shows alignment of CNTs along the applied field lines 
in-between the electrodes with CNTs only located inside the patterned SAM region [10]. 
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Chapter 5: Experimental Setup / Strain Testing Results  

 

Experimental studies are performed using the following sample preparation methods.  Purified 

SWCNT material from Carbon Nanotechnologies, Inc. is used as received and suspended in 

electronic grade toluene at approximately 1µg/ml.  The CNT solution is then sonicated for a 

period of 24 hours at which time the solution appears to be optically dispersed.  The CNT 

solution is deposited on the surface of the samples and aligned between the electrodes using the 

di-electrophoretic technique described in chapter 2.  This technique applies 10Vpp between 

opposing electrodes alternating at 5Mhz for 15sec. Then the sample is blown dry with nitrogen.  

The quantity of tubes deposited and aligned between the electrodes can be influenced by both the 

deposition time and the density of tubes in solution.  It was found, however, that the previously 

mentioned parameters yield few CNT bundles aligned between the electrodes, often only a single 

bundle. 

To facilitate CNT depositions and in situ conductivity measurements inside the atomic 

force microscope (AFM), the samples have been designed to fit inside a zero insertion force 

(ZIF) connector with pin outs for each individual circuit element.  Using the ZIF connector for 

CNT deposition typically yields a better connection to the electrodes than using a point probe 

technique and results in a more even CNT distribution between the electrodes.  The same FIZ 

connector is also used to in situ conductivity measurements. 

Imaging and manipulation of the CNTs is done using the ThermoMicroscopes Explorer 

AFM coupled with the Nanomanipulator®.  The sample is first imaged in tapping mode where a 

specific CNT bundle is identified for manipulation.  Once engaged for manipulation the tip 
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travels a user-defined course in contact mode with a preset tip setpoint.  The setpoint defines 

how much force this tip exerts on the sample surface.  Typical setpoint values used ranged from 

.1-1 nanoAmps. To permit greater tip - surface force, stiffer Tap 300 cantilevers (NanoDevices, 

Inc.) were selected which have a resonant frequency of approximately 300Mhz.  During the CNT 

manipulation, lateral force data are taken along with the CNT device resistivity data with a 

simple Labview program.  Resistivity data are taken using an LR-700 linear resistance bridge 

while lateral force data and topography data are taken directly via the AFM.  The experimental 

schematic is shown in figure 5.1. 

 

 

 

Figure 5.1 - Experimental schematic showing the AFM / Nanomanipulator® and data 
acquisition configuration.  
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On the sample shown in figure 5.2, three different bundles span from one set of 

electrodes to the other and result in several possible current carrying configurations.  Two 

different paths were identified to be the most probable current carrying paths and were then 

tested with the Nanomanipulator®.  The AFM tip is set close to the CNT, moved away from it, 

then through it, then back in the original direction.  These direction changes are used to 

demonstrate a baseline measurement in the lateral force data shown in figure 5.3.  The lateral 

force data also show the effect of the cantilever tip interacting with the nanotubes also shown in 

figure 5.3. By sweeping the cantilever across the surface in contact mode perpendicular to its 

long axis, the tip is sensitive to tribological forces on the surface.  The sensitivity is represented 

as the twisting of the long cantilever using the tip at the end of the cantilever as a moment arm.  

The torque is measured in the photodetector by subtracting the right signal from the left signal 

illustrated in figure 5.1. 

 

R=112kΩ 

Figure 5.2 - Nanomanipulator® image of the CNT device with nanotubes dispersed on the 
surface.  There are three possible current carrying paths which have been identified and are 
outlined on the right image.  
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Figure 5.3 - This is a typical lateral force curve for CNT manipulation.  The arrows on the top of 
the chart indicate the direction the AFM tip was traveling while the LFM data was taken. The 
dip in the later portion of the data indicates the additional resistance of the CNTs interacting 
with the AFM cantilever.  
 

Fig. 5.4 shows the first CNT bundle selected to be moved in the left image and post 

manipulation in the right image.  This modification, however, did not have any observable effect 

on the resistivity of the sample.  The other probable current carrying CNT was then manipulated 

as shown in figure 5.3.  This resulted in a slight displacement of a short portion of the CNT and a 

resistance change from 100kOhms to 127kOhms.   

 

 

 

 57



 

 

A. B.

Figure 5.4 - Nanomanipulator® screen image of the irst CNT bundle selected to be moved on 

the left and post manipulation on the right.  This modification did not affect the resistivity of the 

sample. 

 

Of particular interest is how the deformations are highly localized to the portion of the 

tube that was in direct contact with the AFM tip and the immediate surrounding area.  The full 

bundle does not move due to the strong van der Waal attraction between the CNT along its entire 

length and the SiO2 surface of the substrate.  

Further manipulations are shown in figure 5.5.  An additional manipulation pushing the 

same CNT bundle further in the same direction results in a greater increase in the electrical 

resistance as shown in figure 5.5, manipulation 2.  In manipulation 4, the same bundle was then 

pushed in the opposite direction (back towards its original position) resulting in a decrease in the 

resistance.  This data suggest that the first manipulation strained the nanotubes.  Then they were 

strained even more in the second manipulation, followed by the fourth manipulation which 

effectively relaxed them.   
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CNT Manipulation 1  CNT Manipulation 1  

Before Modification After Modification

R≈127kΩR≈100kΩ

 

Figure 5.5 - The CNT rope shown above left is now selected to be moved with the 

Nanomanipulator®.  Above right shows the effect of the modification.  The bottom two images 

show two different modifications of the CNT rope and their associated change in resistance. 

 

On the third manipulation, the AFM tip bounced over the CNT bundle and did not move 

it.  This had little effect on the resistance of the device, and appeared in the data as a spike in the 

resistance as the probe moved over the bundle.  The resistance vs time data are shown in fig. 5.6 

along with the manipulations correlating to the changes in resistance. 

While the AFM image of manipulation 5 is not included here, its effect is recorded in the 

resistance data in figure 5.6.  This manipulation occurred on the same CNT rope as the previous 

  

Manipulation 4Manipulation 2 

R≈127kΩ to R≈145kΩ R≈135kΩ to R≈122kΩ 
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four manipulations but in a location closer to the upper electrode where no other manipulations 

had previously taken place.  As shown in the data, this had a great effect on the resistance of the 

sample, and rapidly increased the resistance from about 120kΩ to more than 140kΩ. 

The actual data in figure 5.6 are displayed in grey, and a 100 point moving average is 

shown in black.  The slope seen at each of the manipulations in the moving average is an artifact 

of the averaging scheme. 

A detailed discussion of these results follows in chapter 7.  

 

Resistance Data – CNT Manipulation Correlation 
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Figure 5.6 - Resistance vs. Time data showing the correlation between CNT manipulations and 
resistance changes. 
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Chapter 6: Flexible CNT-Based Strain Sensor 

 
6.1 Device Fabrication 
 
In order to apply uniaxial strain to nanotubes while monitoring their conductivity, a flexible 

strain sensitive nanotube-based device has been fabricated using the lithography techniques 

described in the previous chapters.  Instead of having localized deformations caused by direct 

contact with an AFM tip, here the flexible nature of the polyimide on which the circuit is 

constructed transfers loading directly to the nanotubes.   

Fabrication of the device begins first by coating a Si wafer with a polyimide.  After the 

polyimide has cured on the surface, the sample can undergo the same lithography, metallization, 

and nanotube deposition steps described in previous chapters.  Once completed, the polyimide 

can be separated from the silicon substrate by etching the oxide layer off the silicon, which 

yields the highly flexible CNT based circuit demonstrated in figure 6.1.  Controlled strain vs. 

resistance testing is accomplished by mounting the flexible device to an aluminum coupon which 

is loaded in tension in a single axis load frame. 

Detailed fabrication steps are as follows: toluene (ACS reagent grade, 99.5%), 

hydrofluoric acid (HF, 48% in water), sulfuric acid (H2SO4, ACS reagent grade), and hydrogen 

peroxide (H2O2, 30%) were purchased from Aldrich and used as received.  Rapid-curing 

polyimide precursors solution (PI2525 and HMD 2610) was purchased from HD Microsystems 

and used as received.  Oxidized silicon wafers (500 nm SiO2 thickness) were purchased from 

TTI Silicon.  
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Figure 6.1 - Flexible CNT-based strain sensor prototype. 

 

Before use, the oxidized silicon wafers were cleaned by immersion in “piranha” solution, 

70:30 H2SO4:H2O2, for 30 minutes at 100oC to remove any organic contaminants present.  After 

cleaning, the wafers were sequentially rinsed with de-ionized water and ethanol and then dried 

under a stream of nitrogen. 

Prototype sensors were constructed on the flexible, plastic substrates by coating a cleaned 

oxidized silicon wafer with a thin film (~12 µm) of polyimide (PI2525) by spin coating at 2000 

rpm for 30 seconds.  After spinning, the film was cured in air by heating to 200oC at 4oC/min, 

holding at 200oC for 30 minutes, heating to 300oC at 2.5oC/min, and holding at 300oC for 60 

minutes, followed by a gradual cooling to room temperature [33].  All patterning and SWCNT 

deposition was performed using the procedures listed for sensor fabrication in chapter 3. 

Here, traditional photo- and electron-beam lithography and metal deposition techniques 

were used to deposit circuit elements followed by SWCNT deposition on the polyimide coated 

substrate.  Large circuit elements (e.g bond pads, wires, etc.) were defined by illuminating with 

UV through the same photomask used for the Nanomanipulator® experiments.  Following 
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development of the photoresist, a thin layer of gold (30 nm) was evaporated onto the surface.  A 

set of electrodes was then defined using electron-beam lithography to deposit and align the 

SWCNTs using the same parameters as in section 3.1.  To create electrodes for depositing and 

aligning the SWCNTs (or alignment electrodes), a thin layer of poly methyl methacrylate 

(PMMA) was deposited onto the pattern by spin coating at 3000 rpm for 30 seconds followed by 

a 90 second pre-bake at 180°C.  The electrodes were then defined using an electron beam set to 

20pA of beam current and a beam dose (line dose) of 1.3 nC/cm.  The typical width of each 

electrode was approximately 1 µm, and the separation between the electrodes was 3 µm. 

  Deposition and alignment of the SWCNTs was accomplished using a dielectrophoretic 

technique.  First, a small amount of nanotubes, approximately 1µg/ml, was dispersed in toluene 

by ultrasonication for 24 hours.  Because the concentration of nanotubes in the suspension was 

small, only a slight discoloration occurred when inspected optically.  Several drops of this 

solution were then placed on the sample so that the electrode surface was covered.  Two spring-

loaded pins were then used to make contact with the pads for the dielectrophoresis CNT 

deposition and alignment.  Typical DEP conditions for deposition were 10 VPP at 2 MHz for 

15sec. 

Following the required lithography, metal deposition and CNT deposition steps, the 

polyimide film was removed from the silicon surface by dissolving the oxide layer on the Si 

wafer using a 1% hydrofluoric acid (HF) solution.  To prevent the nanotubes from being 

dislodged during the removal process, the polyimide coated silicon surface was held vertically by 

forceps so that only one edge of the surface is exposed to the HF.  As the HF dissolves the oxide 

layer, capillary forces draw the HF up behind the polyimide layer, resulting in removal of the 
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polyimide film while protecting the nanotubes from the HF solution.  After removal of the film, 

the polyimide substrate is gently rinsed with de-ionized water to remove any residual HF [33]. 

 

6.2  Device Testing 

Once fabricated and removed from the silicon substrate, the device was mounted onto the center 

of an aluminum strip with Micromeasurements GA-2 epoxy.  Two strain gauges were also 

mounted to the aluminum strip with MicroMeasurements M-Bond 200 adhesive, directly 

opposite from the CNT device. One axial and one transverse gauge seen in figure 6.2 were used 

as reference gauges.  The transverse gauge, however, was not used in this work. 

The four CNT sensing elements of each device were wired in parallel and connected to 

the LR-700 resistance bridge.  The resistance bridge sources current and measures the voltage  

drop over the sample.  This can be conducted in a four lead measurement or a two lead 

measurement as was performed in this work.  Knowing the voltage and current, it returns the 

sample’s resistance.   

Silver conductive paint was used to connect the device to the wire leads.  The specimen 

was loaded into the single axis load frame shown in figure 6.2 and cycled through a variety of 

loading conditions.  For each test, the resistance of each device was monitored and plotted 

against the strain data from the strain gauges. 

The aluminum coupons on which the CNT samples were mounted were cyclically loaded 

at different ranges of loads between 2204 psi and 22040 psi at .01Hz.  The load frame in this 

case was operated by controlling the loading in Newtons, pounds, or kilograms.  The cross-

sectional area of the aluminum coupon was measured and used to determine the loading in terms 
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of pressure in the aluminum in psi. These loads then translated to strains from 100 to 710 

microstrain.  The strain data are shown in figures 6.3 through 6.9. 

 

 
 
Figure 6.2 - Top left shows the polyimide CNT device mounted onto the aluminum strip.  Each 
device is tested with all four sensing locations wired in parallel.  Electrical connections to the 
device are made by using conductive paint to attach the leads.  Tensile testing takes place in a 
single axis load frame shown right.   Direct strain measurements were made with strain gauges 
mounted to the back side shown in the bottom left. 
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Figures 6.3 and 6.4 show data collected from the load testing performed on sample 1.  In 

figure 6.3, the resistance data follow the strain data very closely over the duration of the test.  

Some drift in the resistance data is observed but overall the resistance responds consistently to 

the applied load.  Figure 6.4 is a close-up of figure 6.3 and shows how closely the resistance 

follows the applied load.   

Additional tensile testing was performed on sample 1 over different load ranges from 

450-725 microstrain.  This is shown in figures 6.5 and 6.6.  In each figure the resistance of the 

circuit changes with the application of load to the sample over all of the strains tested. 
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Resistance and Strain vs Time
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Figure 6.3 - Sample 1 Load test datafrom 450 – 700 microstrain. 

 

Close up of Sample 1 Load Test 

 

Figure 6.4 - Sample 1 Load test data close up of figure 6.3  
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Microstrain and Resistance vs Time (Sample 1)
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Figure 6.5 - Sample 1 load test data at 450 – 700 microstrain. 

Microstrain and Resistance vs Time (Sample 1)
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Figure 6.6 - Sample 1 Load Test Data at 500-725 microstrain. 
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 Strain vs. resistance testing was also performed on a second flexible sample.  This sample 

showed a much higher resistance before loading than sample 1.  Where sample 1 had a resistance 

less than1kΩ, sample 2 showed a resistance of approximately 2kΩ.  The decreased conductivity 

in sample 2 caused the resistance data to be noisier than that of sample 1.  Figures 6.7, 6.8, and 

6.9 show the resistance and loading data taken for sample 2.  The testing in figure 6.7 included 

two different load tests run consecutively(before t=2.00E+06, and after t=2.00E+06.)  The large 

change at approximately about t=1.4E+06 is thought to be caused by changes in ambient 

temperature and is discussed further in chapter 7.   

 

Microstrain and Resistance vs Time (Sample 2)
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Figure 6.7 - Load test data of Sample 2.  Here loading is shown at two different amplitudes.  
Resistance follows the loading as expected.   At about t=1.4E+06 ms the data takes a large drop.  
This effect was observed on other occasions while testing and is believed to an effect of 
temperature which was not measured here during this test.  
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 Figures 6.8 and 6.9 show each of these sections individually to more clearly show how 

the resistance is affected by the strain.  As expected, the magnitude of the resistance change is 

higher under greater loading and can easily be observed in figure 6.7.  The average change in 

resistance for the lighter loading case was approximately 15Ω where in the larger loading case, 

the average change was approximately 60Ω. 

Further discussion of the data collected here and in chapter 5 follows in Chapter 7. 

 
 
 
 

Microstrain and Resistance vs Time (Sample 2)
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Figure 6.8 - Sample 2 Load test data form 308 – 570 microstrain.  
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Microstrain and Resistance vs Time (Sample 2)
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Figure 6.9 - Sample 2 Load test data from 100 to 710 microstrain. 

 71



 

Chapter 7: Discussion of Results and Future Research 

 

7.1 Discussion of Results 

Three major objectives have been achieved in this thesis.  A theoretical prediction has been made 

which predicts forces exerted on twelve different species of SWCNTs under dielectrophoreis 

between two pointed electrodes three microns apart.  The effect of localized deformations in 

CNTs on conductivity was measured using an atomic force microscope to strain the CNTs on a 

specially designed thin film circuit testbed.  Finally, the effect of uniaxial loading of CNTs on 

their conductivity was measured by fabricating a flexible circuit which was mounted to a test 

coupon and cyclically loaded axially in tension. 

Both the theoretical predictions in chapter 2 and experimental data presented in chapter 3 

indicate that CNTs will align to the applied electric field lines.  The finite element results from 

chapter 2 indicate the electric field lines produced by the patterned electrodes are highly 

consistent with CNT deposition and alignment images shown in figure 3.6. Additionally the 

predictions made in chapter 2 on the dielectrophoretic alignment of SWCNTs indicate that it is 

much more likely to draw metallic and small-gap semiconducting nanotubes in between the 

electrodes than it would be to draw semiconducting nanotubes.  Since small-gap semiconducting 

CNTs are predicted to be the most sensitive to strain as discussed in section 2.2, this is a highly 

desired effect.       

Experimental data confirming the alignment predictions have been acquired using several 

experimental designs.  It is clear from the data presented in sections 2.1, 3.2, and 4.2 that the 

nanotubes are aligning to the applied electric field. However it is more difficult to determine the 
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composition of the deposited CNTs.  One indication of CNT composition would be the 

resistance of the deposited CNTs.  If the DEP is drawing mostly metallic CNTs, the resistance of 

the DEP deposited CNTs should be lower than for a random deposition of CNTs.  With this in 

mind, conductivity tests were made on the sample shown in figure 3.7 which has two separate 

circuit locations on it: one with DEP deposited tubes and one with randomly deposited tubes.  

The sample on the right of figure 3.7 with the DEP deposited tubes showed a resistance of 

10.5kΩ where as the sample on the left was open.  Additionally, the DEP aligned sample shows 

significantly more nanotubes which have been congregated in the regions where the field 

gradients are the strongest, i.e., between the two electrodes.  It is unclear if the lower resistance is 

due to the presence of mostly metallic nanotubes or to the fact that there are significantly more 

nanotubes which result in increased conductance paths to reduce the resistance of the sample. 

The Nanomanipulator® study described in chapter 5 has successfully demonstrated the 

ability to fabricate and test a HiPCO CNT based strain sensitive device.  Deformation of CNTs 

by direct manipulation while measuring the effect on electron transport clearly showed changes 

in resistance with strain.  The results from this study confirm the resistive tunability of the CNTs 

and show that it is possible to fabricate a CNT based sensor from a bulk CNT suspension.  These 

results provide very good incentives for pursuing further CNT based sensor research and, 

coupled with the alignment and deposition techniques described in chapters 2  and 3, the results 

offer a possibility for a large scale build up of CNT device production. 

In this experiment, SWCNTs were aligned between two electrodes then deformed using 

an AFM tip while their electrical resistance was measured.  The AFM tip was able to displace 

small segments of the CNTs near to where the tip made contact with the tubes.  The rest of the 

tubes remained firmly fixed on the surface due to van der Waals forces.  Each manipulation of 
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the CNT resulted in changes in the resistance as shown in figure 5.6. The first manipulation 

caused the resistance (R) to rise from 100kΩ (R0) to 121kΩ.  An additional manipulation 

displacing the CNT further in the same direction caused the resistance to further increase from 

127kΩ to 145kΩ.  The effect of the two manipulations on the CNT bundle is a total ∆R of 45kΩ 

or ∆R/R0 of approximately 45%.  The Nanomanipulator® was then used to push the CNT bundle 

back towards its original position.  The result of this manipulation was a reduction in the 

resistance from 135kΩ to 122kΩ.  These results are consistent with a similar experiment 

conducted by Tombler, et al. [9] where individual nanotubes were suspended over a trench 

between two electrodes.  Reference [9] relates localized deformations in the CNT structure to 

changes in conductivity caused by localized deformations developing in the carbon-carbon bonds 

within the nanotube from force applied to the tube by an AFM tip.  With their experimental 

configuration, they were able to repeatedly deform CNTs at different magnitudes and allow them 

to return to their original resting states while monitoring the resistances of the CNTs.  The main 

difference in the work presented here as opposed to that of Tombler et al. [9] is that the CNTs are 

bundles of HiPCO CNTs instead of single catalytically grown CNTs, and are fixed to the surface 

instead of being suspended.  In the work presented in chapter 5, the nanotubes are attracted to the 

surface along their entire length by van der Waals forces.  Since the AFM probe is so small at its 

tip, it only exerts a force over a very small length of the CNT bundle and it is able to displace 

only the region proximal to the tip. For this reason, only small deformations were possible when 

manipulating the CNTs.  
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Displacing the nanotubes with the AFM tip temporarily overcomes the van der Waals 

forces and is analogous to pushing the suspended CNTs in reference [9].  Once the nanotubes 

have been displaced, van der Waals forces dominate the nanotube – surface interaction and hold 

the nanotubes in their displaced state, not allowing them to recover from their deformation.  This 

is shown in the AFM manipulation data in figures 4.3, 4.6, 5. 4, and 5.5.   

After the two consecutive displacements, the change in resistance, ∆R of 45kΩ, is less 

than an order of magnitude and is consistent with the results in [9] which demonstrated a 

conductance change of approximately 50% for a strain of approximately 1%. 

  The mechanics of this displacement could be a combination of two different 

phenomena.  The first, described in chapter 2, is the actual straining or elongation of the CNTs.  

The other phenomenon is that the individual tubes within the bundle slide very easily against one 

another and will slip to elongate when pushed by the AFM tip.  This, too, could cause a change 

in the resistance due to the changing tube–to–tube contact.   

 Because of the CNT bundling, it is impossible to know what kinds of tubes are being 

strained in each sample.  The electric current however will choose a path of the least resistance 

though the bundle which could be though both metallic and semiconducting CNTs.  Since 

metallic CNTs are theorized to be the least sensitive to strain due to their high lattice symmetry, 

it is very likely that the strain – resistance effects observed here can be attributed to a small 

number of small-gap semiconducting CNTs.  Thus, the localized deformation of the CNTs is 

consistent with molecular dynamics modeling presented earlier [9] which determined that the 

observed changes in resistance are due to localized changes in the carbon bonding hybridization.   
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The effect of uniaxial loading of SWCNTs on resistivity was measured by developing a 

flexible substrate on which a thin film CNT based circuit was constructed.  The test results 

shown in figures 6.3-6.9 clearly indicate repeatable sensitivity to strain through the multiple 

samples tested.  Since the samples were prototypes, and it was not known how the devices would 

respond as a whole to loading, only small strains were tested in this study. 

The data shown in figures 6.3 through 6.9 indicate high strain sensitivity in the flexible 

polyimide CNT devices.  The strains used in this test were significantly smaller than in the tests 

performed in chapter 5 as in well as the testing conducted in [9].   Both of the samples shown 

here demonstrate for each loading case that the resistance data follow the strain data very closely 

and have variations in the resistance at the same frequency used to load the samples.  As 

expected, each sample increases its resistance when the load is increased, and the resistance 

decreases when the load is decreased.   

Some samples, however, did not show any sensitivity to strain.  In some cases the 

resistance of the samples was so large due to poor CNT-metal contact, oxidization problems in 

the metal deposition process, or poor CNT depositions, that variations in the resistance which 

could be attributed to strain were within the error of the measurement.  Other samples simply did 

not conduct at all after fabrication was completed, victims possibly of electrostatic discharge or 

even something as simple as a scratch on the surface severing one of the delicate thin film 

metallic leads.  Sensitivity varied between samples with a ∆R/R being usually < 1%. The 

differences are attributed to the quantity and composition of nanotubes deposited on the device. 

The height measurements of the different samples used in this thesis indicate that the 

nanotubes are highly bundled having 2-100 nanotubes in each bundle.  Few samples showed 

signs of single nanotubes.  Just as before there are a variety of nanotubes in each bundle.  While 
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the metallic tubes are preferred in the alignment process, they carry along semiconducting tubes 

in their bundles.  Again, the varying CNT composition and quantity account for the differences 

in resistance and sensitivity in the samples.   

Load testing indicates a phase lag of 29 degrees between what is measured by the strain 

gauge and the resistance changes from the CNT sample as clearly seen in figure 6.4.  This was 

originally thought to be caused by the plastic nature of the polyimide.  However, a control test 

which placed a strain gauge directly on the polyimide and one on the back side of the aluminum 

coupon to which the polyimide was adhered showed good correlation between resistance cycles 

and loading as shown in figure 7.1.  Importantly, no phase shift between resistance and loading 

was observed in this test as shown in figure 7.1.  Only at frequencies above 5Hz was any 

noticeable phase difference observed and, as mentioned above, load testing on the CNT 

polyimide samples was performed at .01Hz. It is now thought that the phase shift is most likely 

caused by temperature differences at the sample location.  While this was not known during the 

time of testing, later experiments on similar CNT based electro-mechanically sensitive materials 

did indicate a very strong sensitivity to temperature.  Temperature measurements were made 

using a resistive temperature device (RTD) temperature sensor at a distance of 1cm away form 

the center of a coupon.  The coupon was loaded under conditions similar to those used in this test 

and on the on the same load frame. 
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Strain and Displacement vs Time (Polyimide Only)
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Figure 7.1 - Polyimide load test data.  Here a blank polyimide sample was mounted to a test 
coupon and strain gauges were mounted both on the polyimide as well as on the test coupon.  
This data demonstrates how the polyimide is able to transfer the load to the strain gauge though 
its thickness.  The polyimide deformation follows the displacement of the load frame with a very 
high degree of precision. 

 

 

The data show slight temperature changes at the same frequency as the loading of the coupon.  

The exact cause of this temperature change is unclear; it is, however, lagged in phase by 69 

degrees and shown in figure 7.2.  Figure 7.2 presents temperature data taken on a blank 

aluminum coupon vs. displacement under similar load conditions to the CNT based samples 

presented here and is compared to figure 6.4. 
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Displacement vs Temperature
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Figure 7.2 - Temperature vs displacement of a loaded aluminum coupon used to test the flexible 
polyimide-CNT samples is shown on the left.  Figure 6.4 is reproduced on the right for 
comparison.  The temperature measurement at the aluminum coupon is opposite to the observed 
resistance change in the flexible CNT device. 
 
 

While the temperature measurement strongly resembles an inverse relationship to 

resistance, the strain is still believed to be responsible for the change in resistance.  It has already 

been shown earlier that CNTs increase in electrical resistance under loading.  Additionally the 

two measurements indicate a large difference in their phase shift; the temperature shifts by 69 

degrees and the resistance by 29 degrees.  This is a difference of 40 degrees or 11%.  Since 

nanotubes are known to be one of the best heat conductors available, a more immediate response 

to the changes in temperature would be expected to result in little to no phase shift. 

Another effect most likely due to temperature is a DC drift that would appear from time 

to time in the data.  In figure 6.7 the DC shift is clearly visible at approximately t=1.4E+06 ms.  

Before and after the resistance shifts, the effects of straining the sample are clearly visible in the 

resistance plot.  This is consistent with the I-V data taken in chapter two where the resistance 

changes inversely to temperature shown in figure 2.5.  Additional tests comparing sensitivity to 

straining at different temperatures would be interesting to see, as well as tests of these samples 

though larger ranges of strain. 
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The driving force behind this research is to develop multifunctional materials, materials 

that are both load-bearing and self-sensing, which could be integrated in future aerospace 

vehicles.  The findings in this study offer great potential for a variety of aerospace and structural 

applications.  Potential applications include building this device as a stick-on strain monitoring 

sensor for structural monitoring of buildings, bridges, aircraft, space vehicles and launch 

vehicles.  One specific application that recently has received attention and is being studdied is 

the use of the extreme small size of the CNTs to fabricate a dense, highly ordered array of CNT 

strain sensors to be used to map strain fields in localized areas.  This idea points immediately to 

crack growth and crack propagation detection [34]. 

The aviation industry spends very substantial sums of money inspecting known fatigue 

locations and already identified cracks to look for crack development, or growth.  This practice 

often includes disassembly of large portions of the aircraft for inspection removes the aircraft 

from service.  This process is labor intensive to perform and incurs the opportunity cost of 

having the aircraft out of service.  Additionally, it is not uncommon to cause additional damage 

from handling or accidental impacts or other such unforeseen problems by simply taking 

everything apart and putting it back together. By developing a strain field monitoring sensor, a 

sensor could be placed in a high fatigue area or over an already known crack and monitored 

remotely.  This could indicate when and even how a crack has developed or grown, by how 

much and whether or not it is safe to continue operation.  The cost benefits in this case are 

obvious, requiring far less down time of the vehicle or structure, and reducing maintenance costs 
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and possibilities of real time in-situ compensation to prevent further loading of the damaged area 

leading to catastrophic failure. 

 

 

7.2 Suggested Future Research 

The load testing performed in the study of the flexible polyimide samples concentrated on cyclic 

tensile testing within a small strain regime.  Additional testing would be of interest including 

strain-to-failure testing, compression testing, and bending mode testing.  Each of these tests may 

reveal properties of the CNT device that could be optimized for future embodiments of the 

sensor design.  Parameters such as preloading, polyimide thickness, and device architecture may 

be easy parameters to modify, and additional testing would reveal reasons for such 

considerations. 

The empirical data in chapters 2 and 3 suggest a strong correlation to the DEP theory. 

However, further testing is required to determine exactly if the theoretical prediction accurately 

predicts preferential alignment of metallic CNTs.  Raman spectroscopy is able to discern metallic 

from semi conducting CNTs deposited on a surface with a high degree of accuracy.  Experiments 

have already made progress towards obtaining this data. 

Additionally, further studies are required to improve CNT dispersion and deposition.  As 

described earlier, single tube devices offer fewer unknown variables.  Such research is currently 

underway at NASA Langley Research Center as well as within several other research groups 

throughout the world.  The techniques developed here would directly further the understanding 

of CNT electro-mechanics by enabling more consistent and reliable fabrication methods and 

allow for more controlled experiments to determine the CNT sorting potential of DEP. 
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A CNT deposition study would include investigation into possible ways to deposit single 

CNTs or single CNT bundles using a more precise methodology.  One possibility comes from 

the literature which indicated the use of a very large series resistor during the dielectrophoresis 

deposition [14].  This resistor allows a large electric field to exist between the two alignment 

electrodes during CNT deposition.  Once a nanotube or CNT bundle falls into place, it closes the 

circuit.  In doing so, the circuit switches the large voltage drop from between the electrodes to 

the series resistor.  The resistor used in this study was a 100MΩ resistor, a much higher 

resistance than the contact resistance of a single nanotube.  By optimizing such a procedure, it 

might be possible to have a great deal of control in the deposition of CNTs.  By fine tuning the 

frequency and potential of the alignment, it may also be possible to select specific species, 

metallic or semiconducting, of CNTs to be aligned.  Already, the theoretical calculations made in 

chapter 2 suggest metallic – semiconductor sorting potential.  Futher studies may reveal the 

ability to sort out individual chiralities of CNTs. 

Because of the long and thin aluminum load testing coupons used in this study, 

compression testing would have been very difficult to perform without inducing buckling.  This 

would require mounting the sensors on a different type of test coupon.  Compression testing can 

be studied in bending mode.  However, the samples in the current studies were not designed for 

this type of testing.   

The foundation of this research was to take steps towards the realization of high 

performance multifunctional materials.  This goal has been accomplished through the 

development of a detailed theory of nanotube positioning and alignment via dielectrophoresis, 

scanning probe based studies on the strain based conductance change of HiPCO SWCNTs, and 

finally the fabrication and successful demonstration of a HiPCO SWCNT based strain sensor on 
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a flexible substrate.  With the known strength characteristics of the SWCNTs and the proven 

strain sensitivity shown in this body of work, we are one step closer to meeting the 

multifunctional material goal. 
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